A New Estimate on the Rate of Convergence of Durrmeyer-Bézier Operators

نویسندگان

  • Pinghua Wang
  • Yali Zhou
  • Vijay Gupta
چکیده

Recommended by Vijay Gupta We obtain an estimate on the rate of convergence of Durrmeyer-Bézier operaters for functions of bounded variation by means of some probabilistic methods and inequality techniques. Our estimate improves the result of Zeng and Chen 2000. In 2000, Zeng and Chen 1 introduced the Durrmeyer-Bézier operators D n,α which are defined as follows: D n,α f, x n 1 n k0 Q α nk x 1 0 ftp nk tdt, 1.1 where f is defined on 0, 1, α ≥ 1, Q α nk x J α nk x − J α n,k1 x, J nk x n jk p nj x, n k0 p nk x 1 0 ftp nk tdt. 1.2 Concerning the approximation properties of operators D n,1 f and some results on approximation of functions of bounded variation by positive linear operators, one can refer

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convergence of certain nonlinear Durrmeyer operators at Lebesgue points

The aim of this paper is to study the behaviour of certain sequence of nonlinear Durrmeyer operators $ND_{n}f$ of the form $$(ND_{n}f)(x)=intlimits_{0}^{1}K_{n}left( x,t,fleft( tright) right) dt,,,0leq xleq 1,,,,,,nin mathbb{N}, $$ acting on bounded functions on an interval $left[ 0,1right] ,$ where $% K_{n}left( x,t,uright) $ satisfies some suitable assumptions. Here we estimate the rate...

متن کامل

Simultaneous approximation for Bézier variant of Szász–Mirakyan–Durrmeyer operators

We study the rate of convergence in simultaneous approximation for the Bézier variant of Szász– Mirakyan–Durrmeyer operators by using the decomposition technique of functions of bounded variation. © 2006 Elsevier Inc. All rights reserved.

متن کامل

On the Rates of Convergence of Chlodovsky–durrmeyer Operators and Their Bézier Variant

We consider the Bézier variant of Chlodovsky–Durrmeyer operators Dn,α for functions f measurable and locally bounded on the interval [0,∞). By using the Chanturia modulus of variation we estimate the rate of pointwise convergence of (Dn,αf) (x) at those x > 0 at which the one-sided limits f(x+), f(x−) exist. In the special case α = 1 the recent result of [14] concerning the Chlodovsky–Durrmeyer...

متن کامل

A Note on the Bezier Variant of Certain Bernstein Durrmeyer Operators

In the present note, we introduce a Bezier variant of a new type of Bernstein Durrmeyer operator, which was introduced by Gupta [3]. We estimate the rate of convergence by using the decomposition technique of functions of bounded variation and applying the optimum bound. It is observed that the analysis for our Bezier variant of new Bernstein Durrmeyer operators is different from the usual Bern...

متن کامل

Bézier variant of genuine-Durrmeyer type operators based on Pólya distribution

In this paper we introduce the Bézier variant of genuine-Durrmeyer type operators having Pólya basis functions. We give a global approximation theorem in terms of second order modulus of continuity, a direct approximation theorem by means of the Ditzian-Totik modulus of smoothness and a Voronovskaja type theorem by using the Ditzian-Totik modulus of smoothness. The rate of convergence for funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009